Doctor SpinCreativityStorytelling & WritingA Beginner's Guide to Writing About AI

A Beginner’s Guide to Writing About AI

Writing about AI is a challenge for PR writers.

How do you write about AI—without getting it wrong?

Many PR professionals and communicators are tasked with writing articles and texts about artificial intelligence these days.

Since I’ve written quite a few of these articles, I want to share some insights that could help you write your next piece on AI.

Here we go:

Table of Contents

    The Humble Route

    Leading AI scientists aren’t in agreement on how to describe artificial intelligence. As an article writer, you could define AI in whatever way you see fit and be almost sure that there are perspectives out there to support your chosen approach.

    Do you want to describe a toaster as an AI device? Sure, a toaster is a machine that reacts to input to produce a predictive output.

    But be careful. The ambiguity within the AI field is both a blessing and a curse for anyone writing AI articles. You’re free to be creative in your approach—but there’s nothing to hold onto, unfortunately.

    The general uncertainty means that the PR writer must choose a consistent path through the AI text.

    There’s an “artificial intelligence inflation” within corporate writing. Since it’s easy to call just about anything “intelligent” or “smart,” many tech brands over-use the AI term. Especially in their marketing.

    My advice would be to adopt a more conservative approach.
    But what should that approach be, exactly?

    If it’s an algorithm, perhaps call it that instead? If it’s machine-learning, perhaps call it that instead?

    What AI Are You Writing About?

    Artificial intelligence is an area of artificial intelligence research that covers the full spectrum of potentials for future technologies. This includes the various implications for this technology on society, employment, and economic development.

    It also covers how economics could play a role in how different countries may build the first AI to become an independent entity. Countries like Japan, China, and India have been making significant advances in AI research and development through private enterprises and government participation.

    There are attempts at classifying different types of AI. Since we can’t pinpoint a general definition, defining sub-types also becomes challenging.

    1. Reactive AI

    A reactive AI receives input and produces a predictable output. IBM:s computer Deep Blue who defeated chess grandmaster Gary Kasparov is a famous example. 1Gary Kasparov is a chess legend. On September 10 1985, he faced off against the IBM machine, Deep Blue, to determine whether or not machines could outperform humans when it came to chess. The world … Continue reading

    Calling Deep Blue an AI won’t cause any raised eyebrows. It beat a human chess champion after all! However, what about the Netflix algorithm? What about a pocket calculator or a smartphone? Or what about… a toaster?

    2. Limited Memory AI

    Applications that use limited memory AI are like reactive AI systems, but the difference is that a bit of memory AI will use historical results to self-correct.

    If you’ve been tasked with writing a text about AI, this is most likely the kind of AI you’ll be writing about. Almost all “AI applications” that exists today fall under this category.

    3. Theory of Mind AI

    A theory of mind AI will understand you—at least to a degree. These technologies are essential to push AI into a space that could benefit humanity.

    Is it possible to build machines that can feel, both for themselves and on behalf of others? It seems so, but it isn’t straightforward.

    This is where the famous Turing test comes into play; when will we be able to communicate with a machine without being able to tell it apart from how a human communicates? 2The Turing test is a test of artificial intelligence (AI) developed by Alan Turing in 1950. The hypothetical test is conducted by an interrogator who asks natural language questions to both humans … Continue reading

    4. Self-Aware AI

    Also known as the “singularity,” a machine could theoretically become self-aware.

    The space of self-aware AI is highly hypothetical because we have yet to understand whether humans are genuinely conscious or not (we could feel aware).

    Three More Types of AI

    There are three more typical classifications that can be useful for anyone about to write about AI.

    5. ANI (Artificial Narrow Intelligence)

    Artificial narrow intelligence, or ANI, is a term that applies to any computer that has been programmed to do one thing very well.

    For example, the ANI chess program Deep Blue beat its human opponents by analysing more moves in a shorter time than human players are capable of. Many industries use artificial narrow intelligence for tasks ranging from facial recognition to assembling automobiles.

    ANI is a term for a computer’s ability to complete a narrowly-defined cognitive task. The term was coined by MIT scientist and inventor Marvin Minsky in 1966. 3Marvin Minsky was born on September 9, 1927, in New York City. He attended Harvard University, where he studied mathematics and physics. Later, while attending Princeton University, he developed an … Continue reading

    6. AGI (Artificial General Intelligence)

    Artificial general intelligence (AGI) produces a machine with an artificially intelligent system that can perform tasks that require human intelligence. One of the most challenging tasks is the replication of human reasoning abilities.

    The current best performing artificial intelligence is Deep Q-network (DQN). A DQN agent will orchestrate its learning procedure and decide when to use reinforcement learning. 4A Deep Q-network, or DQN, is a type of reinforcement learning algorithm that has successfully solved various engineering problems. The architecture combines a supervised learning model and an … Continue reading

    7. ASI (Artificial Superintelligence)

    Artificial Superintelligence is creating a machine that has cognitive abilities that are superhuman to human beings.

    An AI system can be powered by a database that stores all the information in the world, but it’s not enough for an AI to have this information. It also needs to think rationally and logically, no matter what it comes across.

    The fear is that AI will surpass human intelligence and become too powerful to control.

    The Fear of AI

    There are three types of fear when it comes to AI. Understanding these fears can be helpful when writing about artificial intelligence.

    Fear of Uncontrolled AI

    An AI system could get out of control. This goes for reactive AI, limited memory AI and ANI. Ironically, this is a fear of an AI that we can’t reason with—because it doesn’t understand. It just keeps doing what it’s been programmed to do.

    Fear of AI Supremacy

    If an AI becomes aware (the singularity) or thinks that it is conscious, it could start to reason in a dangerous way for humans. We rarely consider the rights of insects, so why should an AI consider the rights of humans?

    There are legitimate concerns that artificial intelligence could be the next frontier of natural evolution and that mechanical life will surpass and eventually replace biological life.

    Deterministic Fear

    There’s a fear that consciousness is an illusion, that we’re nothing more than biological machines ourselves. The creation of seemingly self-aware machines potentially attacks our ideas of having free will.

    Different AI Technologies

    As you attempt to write about AI, you’re going to be faced with the challenge of describing how the technology actually works. Below are a few terms that might be useful to research further before starting your writing project.

    Algorithms

    Algorithms are used to make decisions. They are sequences of computational instructions that are used to solve a problem.

    Algorithms are commonly applied in computer science, but they are also used in areas outside of computer science, such as genetics. They are used for everything from calculating the fastest route to drive to work every morning to matching donors with recipients for organ transplants.

    Machine Learning

    Machine learning is a form of AI that allows computers to learn new information without being explicitly programmed.

    A machine learning system consists of two essential parts: an algorithm and training data. The algorithm is used to find patterns in the training data, then used to make predictions about new data.

    Neural Networks

    Neural networks are AI technology that mimics how the human brain works. They consist of a series of interconnected neurons that communicate and process information.

    When presented with a problem, the network adjusts its connections and thresholds until it solves it, comes up with a viable solution, or runs out of time.

    Scientists can train neural networks to perform tasks by supplying them with lots of examples and letting them figure out the patterns independently.

    Deep Learning

    Deep learning is a subset of machine learning that is revolutionising the field of AI. Deep learning aims to ensure that machines learn in ways that are similar to how humans do.

    Many different types of algorithms can be used for deep learning. Still, they all have one thing in common: they automatically learn by processing large data sets and iteratively improving performance on some task.

    Quantum Computing

    Quantum computers are a new branch of computing that uses quantum bits, or qubits, instead of the traditional binary bits.

    The primary advantage of a quantum computer is its ability to store exponentially more information than a conventional computer. A slight difference in temperature between two qubits can change their energy states which causes them to be either “up” or “down” at any given time. This property is known as quantum entanglement.

    AI in Pop Culture

    What will happen to humans when artificial intelligence can do everything better than becoming more and more prevalent in the 21st century. Many have seen artificial intelligence as a threat to human civilisation, with some even calling for it to be banned. But others argue that an AI-driven world could be our only hope.

    Artificial Intelligence has been a popular topic in pop culture for quite some time now. Movies have depicted AI as either friendly or evil. Still, it’s not until recently that society has begun to understand the concept of what it means for humanity if the singularity is created.

    The general mythos surrounding AI can be used for references to make your AI text more relatable or understandable.

    Skynet

    In the Terminator movies, the Skynet AI doesn’t show self-awareness signs. It behaves more like a limited memory AI application for war games that have run amok—and that it thinks of humans as enemies.

    The Terminator T-800, which is spawned by Skynet and hijacked by the human resistance, is sent back in time and slowly becomes self-aware throughout the franchise.

    Sarah Connor and T-800 - Terminator - How To Write About AI
    Sarah Connor and T-800.

    Mr Smith

    The AI in The Matrix is fully self-aware. While it struggles to understand how to regulate humanity, its many programs can connect emotionally with the human characters.

    Mr Smith is such a separate program tasked with managing the computer-generated world. Ironically, he learns that he hates his job almost as much as he hates humans.

    Mr Smith - The Matrix - How To Write About AI
    Mr Smith from The Matrix.

    HAL 9000

    Like the T-800, Hal 9000 ranks in between Skynet and Mr Smith.

    While the T-800 and Mr Smith are self-aware, they’re also free to reason outside their hard-coded parameters. HAL 9000, on the other hand, would easily pass the Turing test, but seems unable to break free from its programming. Instead, HAL 9000 finds creative ways to interpret its mission parameters.

    Dave and HAL 9000 - How To Write About AI
    Dave and HAL 9000.

    Summary: How To Write About AI

    Use a humble tonality and reason cautiously. Even the most prominent scientist in AI isn’t in agreement. Be mindful of presenting any certainties. Be extra humble if you’re writing about reactive- or limited memory AI.

    Know your primary AI classifications. You’re most likely going to write about reactive- or limited memory AI. Don’t lead the reader to think that the technology you’re covering is first-cousin with the singularity.

    Take your time explaining the technology. Any reader diving into your text about AI will want to know how the technology works. This might be the most challenging part for the writer, but it’s crucial for making your text work.

    Some of your readers fear AI. The fear of AI is real; even highly educated experts and intellectuals express their concerns. Use fear to make your text more compelling, but do so sparingly—especially if you’re writing about ANI (artificial narrow intelligence).

    AI is interesting to all of us. AI has been a part of our pop culture for a long time. Use references to make your text stand out, but remember that science-fiction is still… science-fiction.

    Cover photo by Jerry Silfwer (Prints/Instagram)

    FOOTNOTES
    FOOTNOTES
    1 Gary Kasparov is a chess legend. On September 10 1985, he faced off against the IBM machine, Deep Blue, to determine whether or not machines could outperform humans when it came to chess. The world watched breathlessly as the world champion challenged the mighty machine. Though most people expected him to defeat the computer easily, they were disappointed when Gary lost to Deep Blue by four games to two.
    2 The Turing test is a test of artificial intelligence (AI) developed by Alan Turing in 1950. The hypothetical test is conducted by an interrogator who asks natural language questions to both humans and AI programs. The AI passes the Turing test if the interrogator cannot tell the difference.
    3 Marvin Minsky was born on September 9, 1927, in New York City. He attended Harvard University, where he studied mathematics and physics. Later, while attending Princeton University, he developed an interest in artificial intelligence. By his third year of college, it became clear that the topic was his life’s work. He later said, “A computer is like a violin. You can imagine a novice trying first a phonograph and then a violin. The latter, he says, sounds terrible. That is the argument we have heard from our humanists and most computer scientists. Computer programs are good, they say, for particular purposes, but they aren’t flexible. Neither is a violin or a typewriter until you learn how to use it.”
    4 A Deep Q-network, or DQN, is a type of reinforcement learning algorithm that has successfully solved various engineering problems. The architecture combines a supervised learning model and an unsupervised learning model. Google engineers initially developed it to play Atari 2600 games superhuman.

    .

    Jerry Silfwer
    Jerry Silfwerhttps://www.doctorspin.net/
    Jerry Silfwer, aka Doctor Spin, is an awarded senior adviser specialising in public relations and digital strategy. Currently CEO at KIX Index and Spin Factory. Before that, he worked at Kaufmann, Whispr Group, Springtime PR, and Spotlight PR. Based in Stockholm, Sweden.
    Buy PR Merch

    Grab a free subscription before you go.

    Get notified of new blog posts & new PR courses

    🔒 Please read my integrity- and cookie policy.

    In 1996, Nick Cave submitted a petition to the MTV Video Music Awards demanding the video for his duet with Kylie Minogue be removed.
    Most popular